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Abstract

Energetic implosions, using two or three load wires
to create a focused axial stagnation of dense wire cores
amidst the assembled precursor plasma, are examined
with respect to the trade between the implosion mass
lost to precursor ablation and the mass or kinetic energy
available at stagnation. The calculated kinetic energy at
stagnation serves as measure for the output x-radiation.

I. INTRODUCTION

The use of a single wire load on large machines like
"Z" is usually avoided due an excessive initial inductance
and subsequent high voltages on upstream components.
There is however a middle ground where a few larger
wires can start well off axis and present much less initial
inductance. Such loads will provide the lower inductance
at the expense of more precursor plasma involvement.

In contrast to closed arrays with hundreds of fine
wires, this relatively unexplored path to energetic im-
plosions would use two or perhaps three load wires of
appropriately heavier mass and aims to create a focused
axial collision of dense wire cores amidst the assembled
precursor plasma. The precursor, not confined by many
wires, would presumably not soften this collision.

Hence we must examine the trade between the implo-
sion mass lost to precursor ablation and the mass avail-
able to deliver the wire core’s kinetic energy.

A clear consequence of this load choice is a quite open
geometry for which the transition to a highly conducting
annular MHD plasma is neither an early nor a necessarily
dominant feature of the electrodynamics. Generalizing
slightly beyond MHD, we use a Lorentz gauge direct
field solver to treat the TEM to TM mode set transition
in the pinch region. The problem is formulated using
a scalar potential Φ and an axial vector potential Az
as unknowns, with the radial vector potential Ar being
determined by the gauge constraint.

In contrast to earlier wire dynamic model (WDM)
formulations with inductance matrix elements good only
in the thin wire limit[1], the present work will make use
of a new analytic Green’s function for Az that accounts
for proximity effects among the wire cores and the return
current structure.

The Green’s function provides a first estimate for the
axial vector potential solution Az(x;y) at the pinch mid-
plane and the net load inductance arising among the
heavy wire filaments. That solution is further refined by
a current density source term representing the extended
coronal plasma conductivity and flow.

The use of empirical mass source terms[2], for estimat-
ing the precursor mass ejection rate and ablation velocity,
is then introduced to complete the picture.

II. MATHEMATICAL FORMULATION

There are two required innovations to get the results we
want. First, we must go beyond the thin wire induc-
tance limit, which is fine for wire core dynamics and
current sharing, but starts to break down when the tenu-
ous corona plasma jackets the wires and entrains current.
Moreover, in the larger wires used for the loads we con-
sider, proximity effects become noticeable as the wires
approach one another. Hence a means of describing the
extended conduction medium of the corona while main-
taining contact with the lowest order inductive picture
enforced by the wire cores is key to a versatile picture.

Second, we require a fluid description that admits a
large adaptability in scale lengths in order to track the
history of coronal plasma elements that drift radially to
form the axial precursor. A smooth generalization of the
discrete wire filaments into fluid particles allows a large
dynamic range in mesh size for the field solver. The
new fluid particle methods used here adapt easily to such
grids because the projection of the fluid particle variables
like density, velocity, and energy onto the Eulerian grid
is virtually exact.
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A. Energy Transfer in a Circuit Model

For the original WDM the direct interaction among an
ensemble of current elements is equivalent to a potential
energy defined by the array inductance. Within the en-
semble are symmetry groups of multiplicity S, e.g.

I = ΣN;S
is=1;1Ji;s = IΣN

i=1Sαi ; (1)

where αi is any S-wise invariant current fraction con-
tained in any particular wire path represented by a series
resistance and inductance.

By construction then the sum of all αi is one. Since
the wire paths are in parallel, the voltage seen by each
path αi is equal in the absence of (small) wave transit
time effects. If we examine the voltage Ve(t) impressed
at the entrance or feed of a wire array cage, then from the
following figure, the resolution of the set αi and the total
current I admitted to the array are seen to be two distinct
problems. From the view of the external generator Vg(t),
the array is a two terminal device and the energy into it
must be the same for all sets αi that show the same net
impedance.

Figure 1.  WDM circuit elements can decompose into symmetry groups,
with each element representing a resistance and inductance.

Vg(t)

 Zgen

Ve(t)

αj is the current in a particular path.

Maintaining equal voltage at each circuit element, the
equations fixing the current fractions αi for any given
Ve(t) =Vg(t)�ZgenI and I can be written as,

Ve(t) = Ri(t)αiI +

�
d
dt

Li j �α jI

�
; (2)

and then integrated over a time interval δ � Ve(t)
dVe=dt to

eliminate the time derivative. Denote by ∆Ψe the change
in flux over this interval, the matrix relation

∆Ψe

I
ui = δ R jIi j �α j +Li j �α j (3)

emerges, with Ii j the diagonal identity matrix, ui a unit
vector over the local group.

In the limit of vanishing inductance, or slow
timescales (δ � Li=Ri), it is easy to see that the
αi = Zjj=Ri(t) and thus they clearly add up to unity.

B. Field Methods for Open Geometries

Loads with fewer wires using larger initial wire diam-
eters and load radii will present a lower initial inductance
at the expense of more precursor plasma involvement. In
contrast to closed arrays with hundreds of fine wires, this
very open field geometry is positioned on the edge of
validity for a conventional inductance and MHD picture
due to the large dynamic range in scale lengths and mag-
netic Reynolds number. The limit of spatially constant
voltage throughout the corona is probably pretty good
but by no means certain.

1. Mode Transitions from TEM to TM

With Zo =
p

εo=µo = 367:7Ω, an inlet TEM boundary
condition on the scalar potential Φ(r; z; t)

Vin = ZLIc =

�
Zo

2π
ln(

r
>

r
<

)

�
Ic ; (4)

determines all the fields near the inlet, where A! 0.
Elsewhere, the time integral of the scalar potential

forms a useful generalization of the familiar inductive
“flux function”, viz. let Ψ(r; z; t)=

R t dt1Φ(r; z; t1), and

Ψ(r
>
)�Ψ(r

<
) =

Z r>

r
<

Ar(zc; r1; t)dr1 ; (5)

Ψ(z
>
)�Ψ(z

<
) =

Z z
>

z
<

Az(z1; rc; t)dz1 ; (6)

on radial zc and axial rc conductor boundaries to ensure
that the tangential component of electric field vanishes.

2. Utility of the Lorentz Gauge

The Lorentz gauge condition choice

r�1∂r(rAr)+∂zAz + c�2∂tΦ� 0 ; (7)

allows the dynamics to concentrate on the solution of
Az(z; r; t) only. One may in fact examine only two cou-
pled wave equations for the needed fields.

∇2Φ� c�2∂ 2
t Φ = 0; (8)

∇2Az� c�2∂ 2
t Az =�µoJz; (9)

with the axial current density near the wires given by

Jz = σ?
�
Ez +Vr�Bθ (A)

�
: (10)

For the inhomogeneous wave equation involving
Az(x;y), a Green’s function can be developed for the
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problem at the diode mid-plane which captures the
proper boundary conditions on the outer return current
surface and on the finite size conducting wire cores.
The function can be built up piecewise from image
currents generated by a source cylinder (a), any number
of floating cylinders b,b’,. . . and the return cylinder (c),

G (x;yjs = a;b;b0 : : :) = ga(x;y)+gb(x;y)+

gb0(x;y)+gxb(x;y)+gxb0(x;y)+ : : : ; (11)

and over the symmetry groups Az(x;y) = ΣsG (x;yjs).
This Az “diagonalizes” the inductance matrix.
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Figure 2.  Three 1000 µm Wire Vector Potential Az(x,y)

3. Variational Form of the Field Problem

Dimensionless spatial variables are based on a charac-
teristic time to of the input pulse line, λo = cto, and a skin

depth δo =
q

2to
µoσ

?

.

With Ez = toE0
z, action integrals advance all fields,

L (Φ) =
Z

dτdA
�
(∇Φ)2� (∂τ Φ)2� ; (12)

L (Az) =
Z

dτdA

�
(∇Az)

2� (∂τ Az)
2�Az(

2λo

δo
)2
Ez

�
:

(13)
Our finite element (FE) representation employs value

and time derivative degrees of freedom, e.g. ~Φ =
[Φ;∂τΦ]. The variation

i+1Wi+1 �
i+1~Φ+i+1 Wi �

i~Φ+i+1 Wi�1 �
i�1~Φ� 0 ; (14)

is equivalent to solving the PDE problem. The symmet-
ric positive definite weight matrices have the general
form, lWm = Tlm
 (Gx +Gy)�T 0

lm
V with integrals of
squared time values T , time derivatives T 0, spatial gradi-
ents G, and spatial values V taken over each cell.

C. Particle Methods

The original formulation[3] used freely drifting parti-
cles only and focused on particle annihilation and cre-
ation rules to track emerging features.

The novel particle solutions used here are drift kinetic
fluid particles (DKFP) and track precisely the distribu-
tion function evolving under the action of the drift ve-
locity C and acceleration A which are functions of local
position x, C = V+x �δ=h ;a = A+x �α=h :

These DKFP contain three common factors which rep-
resent the dilation of the initial size (due to the shear
in the velocity and acceleration), and the (asymmetric)
movement of the initial domain boundaries. For a 1D par-
ticle class these are:

D(t) = (1+
t δ
h

+
1
2

t2 α
h

) ; (15)

h�(t) = �h+(V +�δ ) t +
1
2
(A+�α) t2 : (16)

The expected profile for number density (per unit
length, area, or volume) n(X ; t)�< N > =` is then:

n(X ; t)=
N

2hD(t)

�
erf

�
(h+(t)�X)
p

2U t

�
+ erf

�
(X �h�(t))p

2U t

��
;

(17)
with similar expressions for momentum and enthalpy.
The fluid properties, needed by the electrodynamics to
support the evaluation of a magnetic Reynolds number
(Rm = 2`BtoVr=δ 2

o ) and the source term above, are then
easily projected into each node or cell of the field solu-
tion grid with virtually no error.

1. Source Boundary Conditions at the Wire Core

The detailed accounting of material phase changes as
the wires vaporize and ionize is left to future refinements.
A reasonably simple and apparently accurate approxima-
tion is to balance the force of the wire core attraction
with a “rocket” force due to the inward flow of coro-
nal plasma[2]. Here a strict balance is too specialized, for
what is needed is a path to account for wire loads that do
not hang at the initial radius until they virtually disinte-
grate. From earlier work[4] we know that Al foil switches
exhibit an areal mass loss rate that scales directly with
the surface magnetic energy density, viz. ∂tm = �κ B2

8π ,
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and a flow velocity determined by a sound speed[5] or, as
seen for switch foils, an Alfven speed characterized by
local field or “private flux” near the wire. Such consider-
ations lead to a mass loss estimate, for a wire of length `
and radius rwire, that scales like

ṁ� 10κ(`=rwire)I
2
[MA][µg=ns] : (18)

Typical values for κ are [5-25] µgcm=ergs and we
find that, in keeping with the other models cited here,
only a small fraction of the wire current (� 10�2) can be
viewed as directly participating in this erosion process.
The larger current fraction must be concentrated outside
the core in the vapor and plasma emitted by the wire.

2. Magnetoplasma Conductivity

The Epperlein-Haines[6] formulation for the required
skin depth δo in the wire corona can be written

1=σ? � η? = η0 α?(Z;ωτ) (19)

with, α?(Z;ωτ) a rational function, and

η0 �
� me

e2neτe

�
= 1:147519 �10�14 Z lnΛ

T 3=2
[eV ]

[s]: (20)

As needed in the Az source term, for a time to,

(
λo

δo
)2 = 1:218472 �10�2 λ 2

o

2to

T 3=2
[eV ]

lnΛ Z α?(Z;ωτ)
(21)

is the (dimensionless) equivalent.

III. EARLY INDUCTANCE
AND ENERGY AT STAGNATION

First we have examined the question of initial induc-
tances for loads that might be contemplated on larger ma-

Table 1. Initial Inductances and Masses for Ti Loads

Size L1 L2 L3 Mass
µm nH

cm
nH
cm

nH
cm

µg
cm

1000 5.88 2.95 1.97 . . .
500 7.27 3.64 2.43 . . .
200 9.11 4.56 3.05 1,426
100 10.49 5.25 3.51 357
50 11.98 5.95 3.97 89.2
20 13.71 6.86 4.58 14.26
10 15.10 7.55 5.04 3.57

chines like “Z”. For 1,2, and 3 wire loads set at 0.9
of the return current radius, one sees quite favorable
inductances for diameters near or above 100µm. The
larger masses shown in Table 1 above 100µm clearly
would not be viable, but here hollow loads of large radius
and lower mass should be examined.

With a load mass mi in µgm per wire, inductance L
in nH, driver voltage V in MV, and pinch dimensions
of length `, and radius r0 in cm, the available wire core
energy at stagnation scales as,

Kimp;2 = 522:4
�

r0 (mi`)
1=2 V=L

�
[kJ]: (22)

One expects, Kimp;3 =
p

4=3Kimp;2 for the three wires.
We have (i) modified the wire dynamic model (WDM)

to the calculation of kinetic energy transfer to such low
wire number loads on both Double Eagle and "Z" class
drivers. and (ii) assessed the load energy and upstream
voltages.

For DE any initial mounting of two or three 50 to 200
µm Ti wire loads at radii in excess of 0.6 of the return
current radius will easily preclude early voltages near the
insulator stack from rising above one half the open circuit
voltage as the load initiates and starts to run in. The best
available kinetic energies are about 80 kJ for two wire
loads, and about 100 kJ for three wire loads. The (60-80
µg/cm) masses required are typical for DE, the inductive
current “bite” is clear.

For “Z” again initial mounting of similar wire loads at
radii in excess of 0.6 of the return current radius will also
keep early voltages in bounds. The best available kinetic
energies are about 600 kJ for two wire loads, and about
900 kJ for three wire loads. The (250-375 µg/cm) masses
used are an excellent match in “Z”.

In both cases the result of too much mass erosion is to
degrade the available kinetic energy at stagnation.
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